Home / Essays / he role of morphology in language and reading development.

he role of morphology in language and reading development.

T

Write a Reflective Paper; Discuss the role of morphology in language and reading development.

http://rer.aera.net
Research
Review of Educational
http://rer.sagepub.com/content/80/2/144
The online version of this article can be found at:
DOI: 10.3102/0034654309359353
May 2010
REVIEW OF EDUCATIONAL RESEARCH 2010 80: 144 originally published online 5
Peter N. Bowers, John R. Kirby and S. Helene Deacon
Review of the Literature
The Effects of Morphological Instruction on Literacy Skills : A Systematic
Published on behalf of
American Educational Research Association
and
http://www.sagepublications.com
Additional services and information for Review of Educational Research can be found at:
Email Alerts: http://rer.aera.net/alerts
Subscriptions: http://rer.aera.net/subscriptions
Reprints: http://www.aera.net/reprints
Permissions: http://www.aera.net/permissions
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
144
Review of Educational Research
June 2010, Vol. 80, No. 2, pp. 144.179
DOI: 10.3102/0034654309359353
c 2010 AERA. http://rer.aera.net
The Effects of Morphological Instruction on
Literacy Skills: A Systematic Review of the
Literature
Peter N. Bowers and John R. Kirby
Queenfs University
S. Helene Deacon
Dalhousie University
The authors reviewed all peer-reviewed studies with participants from preschool
to Grade 8 for this meta-analysis of morphological interventions.
They identified 22 applicable studies. Instructional effects (Cohenfs d) were
averaged by linguistic outcome categories (morphological sublexical, nonmorphological
sublexical, lexical, and supralexical) and comparison group
(experimental group vs. control or experimental group vs. alternative training).
The authors investigated the effects of morphological instruction (a) on
reading, spelling, vocabulary, and morphological skills, (b) for less able
readers versus undifferentiated samples, (c) for younger versus older students,
and (d) in combination with instruction of other literacy skills or in
isolation. Results indicate that (a) morphological instruction benefits learners,
(b) it brings particular benefits for less able readers, (c) it is no less
effective for younger students, and (d) it is more effective when combined
with other aspects of literacy instruction. Implications of these findings are
discussed in light of current educational practice and theory.
Keywords: meta-analysis, instructional practices, literacy, reading, elementary
schools.
Our purpose in this article is to provide a systematic review of the evidence
about the effects of instruction about the morphological structure of words on literacy
learning. Morphology is the conventional system by which the smallest units
of meaning, called morphemes (bases, prefixes, and suffixes), combine to form
complex words.1 For example, the word unhelpful has three morphemes that can
be represented orally, /.n/ + /hƒÃlp/ + /f.l/, or in writing, <un-> + <help> + <-ful>.
The English orthography is considered to be morphophonological (Chomsky &
Halle, 1968; Venezky, 1967, 1970, 1999), in that both units of meaning and of
sound are represented in print. Morphology has received far less attention in literacy
research than has phonology (National Reading Panel, 2000). As we see in
the review that follows, there is growing evidence of the role of morphological
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
145
knowledge in literacy development (Carlisle, 2003; Deacon & Kirby, 2004; Nunes,
Bryant, & Bindman, 1997; Roman, Kirby, Parrila, Wade-Woolley, & Deacon,
2009).
Morphological knowledge is referred to in various ways in the literature,
including as morphological awareness and morphological processing.
Morphological awareness has a specific meaning, referring to gawareness of morphemic
structures of words and the ability to reflect on and manipulate that structureh
(Carlisle, 1995, p. 194). Morphological processing on the other hand can
include less conscious or implicit processing of morphological information (e.g.,
Deacon, Parrila, & Kirby, 2008). For the purposes of this review, because it was
not always clear what the participants were learning, we use the more general term
morphological knowledge.
Morphological knowledge has the potential to affect literacy skills in at least
three ways, through word recognition, comprehension, and motivation. A great
deal is known about the factors supporting word recognition: These include phonological
awareness, rapid automatized naming, orthographic processing, and
vocabulary knowledge (for a review, see National Reading Panel, 2000).
Morphological knowledge is a further factor supporting efficient and accurate
word recognition (Carlisle, 2003). For example, morphemic boundaries affect the
pronunciation of letter sequences: ea is pronounced as one phoneme in reach
because it occurs in one morpheme but as two phonemes in react because the two
letters are in different morphemes. The relationship between morphological
knowledge and word reading has been shown to be independent of the other factors
mentioned above (Deacon & Kirby, 2004; Roman et al., 2009). Morphological
knowledge may also contribute to reading comprehension, through improved
word recognition, but also by helping readers understand the meanings or syntactic
roles of unknown words (Carlisle, 2003). A number of the authors of the intervention
studies reviewed here commented that morphological instruction may
contribute to literacy by increasing motivation to investigate words (e.g., Berninger
et al., 2003; Bowers & Kirby, in press; Tomesen & Aarnoutse, 1998). We found no
studies that included outcome measures of motivation, so this interpretation is still
speculative.
Given the increasing evidence of the relationship between morphological
awareness and reading outcomes (e.g., Carlisle, 2003), there is a parallel increase
in interest in teaching children about morphology. By its nature morphological
instruction addresses sublexical features of a language. The ultimate goal of this
instruction, however, is not for children to learn about morphemes. Rather, it is
hoped that explicit morphological instruction will increase understanding about
oral and written features of morphology at the sublexical level that, in turn, will
influence literacy skills at the lexical level (e.g., word reading, spelling, and vocabulary)
and the supralexical level (e.g., reading comprehension). For sublexical
morphological instruction to result in literacy gains at higher linguistic layers,
there must be some transfer beyond that sublexical content. Presumably this transfer
would occur through improved word recognition, which in turn might facilitate
text comprehension. It can be expected then that any gains found for lexical measures
would be less than gains found for morphological sublexical tasks. Similarly,
it may be that increased knowledge of morphemes as meaning cues for words
could affect reading comprehension, the supralexical layer. Transfer to reading
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
146
comprehension may be less immediate and weaker than that found for the lexical
layer and may require the integration of morphological knowledge with other literacy
skills.
The merits of new instructional content cannot be effectively investigated in
isolation from questions about how that content is taught and the individual differences
among those who receive the instruction. Any benefits of morphological
instruction may differ greatly based on a variety of factors. Developmental issues
such as the learnerfs age and language ability at the point of instruction may have
instructional consequences. Instructional design questions include the ideal length
of interventions and the optimal manner of presentation of morphological content.
These instructional questions also provide structure to our investigation of morphological
intervention studies.
Importance of Morphological Knowledge in Reading Outcomes
Before reviewing the studies of morphological instruction, it is helpful to
briefly review evidence for the correlation between morphological knowledge and
literacy in students who have not received special morphological instruction.
Morphological knowledge (assessed in the absence of specific instruction) has
been found to predict unique variance in sublexical tasks such as pseudo-word
reading after controlling for factors including phonological awareness, orthographic
processing, and naming speed (e.g., Deacon & Kirby, 2004; Fowler &
Liberman, 1995; Roman et al., 2009). An influence of morphological knowledge
on lexical tasks has been shown in studies of word reading accuracy (e.g., Carlisle,
1995, 2000; Carlisle & Katz, 2006; Elbro & Arnbak, 1996; Fowler & Liberman,
1995; Leong, 1989; Roman et al., 2009; Singson, Mahony, & Mann, 2000). Also
at the lexical layer, morphological knowledge has been shown to predict unique
variance in vocabulary knowledge (Bertram, Laine, & Virkkala, 2000; Carlisle,
2007; Mahony, Singson, & Mann, 2000; Wysocki & Jenkins, 1987) and spelling
(e.g., Deacon, Kirby, & Bell-Casselman, 2009). Finally, evidence at the supralexical
level can be found in research showing a unique contribution of morphology
to reading comprehension after controlling for other variables associated with
reading (e.g., Carlisle, 1995, 2000; Deacon & Kirby, 2004; Elbro & Arnbak, 1996).
Although the correlational or predictive studies offer strong support for the role of
morphological knowledge in literacy development, correlational studies can never
completely answer the question of causation.
Developmental Trends and the Timing of Instruction
There is some suggestion of changes in the role of morphological knowledge
for literacy skills in different age groups. Early research established that children
as young as 4 years had morphological knowledge (e.g., Berko, 1958). Evidence
for morphological cues influencing spelling has been shown for 5- and 6-year-old
children (Deacon & Bryant, 2006; Kemp, 2006; Treiman, Cassar, & Zukowski,
1994). Carlisle and Stone (2005) found that children aged 7 to 10 years made
use of morphological structure in reading derived words (also see Deacon, Whalen,
& Kirby, 2010). There is some suggestion that the role of morphological knowledge
in reading increases with age whereas that of phonological awareness
decreases (Singson et al., 2000), but that does not appear in all analyses in all studies
(e.g., Deacon & Kirby, 2004; Roman et al., 2009). Certainly, an increase in the
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
147
importance of morphological knowledge is the prediction of some prominent models
of literacy development (e.g., Ehri, 1995, 1997; Ehri & McCormick, 1998);
children are expected to become more fluent readers later in reading development
as they increasingly use commonly recurring letter patterns (e.g., .ight and .ed) as
units. Notably, these units include morphemes. The question of the developmental
pattern of the contributions of morphological knowledge to reading outcomes
clearly has substantial empirical and theoretical implications.
Accordingly, the most effective point at which to introduce this content to classroom
instruction remains an important unresolved question. Adams (1990) recommended
avoiding explicit morphological instruction until upper elementary years.
More recently, researchers have called for early instruction about morphology
along with other oral and written features of language (e.g., Carlisle & Stone,
2005; Henry, 2003; Nunes & Bryant, 2006). Results from intervention studies are
needed to shed light on when this instruction is most effective.
Differential Effects Associated With Reading Ability
The role morphological knowledge plays for more and less able readers is
another important question. A well-established source of difficulty for struggling
readers is a phonological processing deficit (National Reading Panel, 2000). A
number of researchers have suggested that morphological knowledge may represent
a particular advantage for struggling readers (e.g., Carlisle, Stone, & Katz,
2001; Casalis, Cole, & Sopo, 2004; Elbro & Arnbak, 1996). As an example,
Carlisle et al. (2001) found that both poor and average readers were better able to
read morphologically transparent words than shift words (transparent words are
those in which the pronunciation of the base is the same after adding affixes,
whereas shift words are those in which the basefs pronunciation changes). Carlisle
et al. concluded that both poor and average readers must draw on morphological
knowledge when they are reading. A more detailed picture comes from Casalis et
al. (2004). They found that dyslexics were behind reading-age controls in morphemic
segmentation but that the two groups performed equally in a morphological
sentence completion task and dyslexics in fact outperformed the reading-age controls
in a morphological production task. They concluded that dyslexics might take
advantage of morphemes in processing, particularly given that these are typically
larger units of sound that are connected to meaning. Introducing explicit morphological
instruction may build on a relative strength for dyslexic learners (Deacon
et al., 2008; Elbro & Arnbak, 1996).
Rationale for Studying Morphological Instruction
Typical classroom instruction includes very little, if any, systematic and sustained
attention to the morphological structure of words (Henry, 2003; Moats, in
press; Nunes & Bryant, 2006). Therefore, virtually all the findings outlined in the
preceding sections are based on uninstructed morphological knowledge. Only
examination of evidence from morphological interventions can shed light on the
causal role of morphological knowledge and whether the existing research accurately
represents the role morphology plays in literacy development.
The distinction between taught and untaught morphological knowledge may
have special relevance for some of the questions addressed in the preceding sections.
If uninstructed morphological knowledge provides some struggling readers
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
148
with a compensation strategy, as suggested by Casalis et al. (2004), deliberate
morphological instruction may help them harness this strategy more effectively.
Deliberate morphological instruction may create knowledge that is different from
the untaught knowledge examined in existing correlational or predictive studies.
Deliberate instruction should lead to more accurate and quicker learning and more
explicit knowledge. If morphological instruction were introduced early in literacy
learning, morphological knowledge would have time to become consolidated and
have more opportunities to contribute to literacy learning.
Intervention studies are necessary to investigate the causal links between morphological
knowledge and literacy development, just as studies such as Bradley
and Bryantfs (1983) were needed to establish a causal link between phonological
awareness and later reading ability. The predictive or correlational studies are
important but fail to address the directionality of influence between morphological
knowledge and literacy skills. It may be that morphological knowledge builds
literacy skills or that developing literacy skills build morphological knowledge or
that there is some mutually supportive relationship. Evidence from morphological
interventions is needed to determine whether an increase in morphological knowledge
will influence the development of literacy skills. Also, as we revisit in more
detail in the discussion, the question of whether morphological instruction is helpful
for younger and/or less able readers has clear implications for current models
of reading development (e.g., Ehri, 1995).
Current Morphological Instruction Research
A small but growing body of research has investigated the effects of morphological
instruction on reading (e.g., Abbott & Berninger, 1999; Berninger et al.,
2003; Berninger et al., 2008), spelling (e.g., Nunes, Bryant, & Olsson, 2003;
Robinson & Hesse, 1981), and vocabulary (Baumann, Edwards, Boland, Olejnik,
& Kamefenui, 2003; Baumann et al., 2002; Bowers & Kirby, in press). The metaanalysis
described here synthesizes results from morphological interventions that
have examined the effect of instruction both with participants identified with reading
difficulties (e.g., Arnbak & Elbro, 2000; Tyler, Lewis, Haskill, & Tolbert,
2003) and spelling difficulties (e.g., Kirk & Gillon, 2009) and with undifferentiated
participants (e.g., Baumann et al., 2002; Baumann et al., 2003; Bowers &
Kirby, 2006, in press). We investigate results from instructional studies with age
groups from preschool (e.g., Lyster, 1998, 2002) to upper elementary (e.g.,
Robinson & Hesse, 1981) and across a variety of languages (English, Danish,
Dutch, and Norwegian). A meta-analysis will allow patterns to be seen on a larger
scale than is possible in separate studies and will to some extent overcome limitations
because of sample size, instructional methods, and variable selection.
Reed (2008) published the only quantitative synthesis of morphological interventions
that we have been able to identify. Her study investigated morphological
intervention studies conducted in English between 1986 and 2006 with students
from kindergarten to Grade 12. Reed identified seven studies that met her inclusion
criteria and provided a descriptive account of the effect sizes for all outcome
measures.
In her sample, three studies focused on word identification, three on
vocabulary, and one on spelling. Reed reported a wide range in effect sizes and
concluded that stronger effects were associated with instruction focused on root
(base) words compared to affixes alone. Three studies from two publications in her
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
149
review (Abbott & Berninger, 1999; Vadasy, Sanders, & Payton, 2006) specifically
selected low achieving readers. Reed reported medium effect sizes on reading and
reading-related outcomes from these studies and found these effects to be larger in
general than those for the other intervention studies. She concluded that morphology
instruction should be tailored to studentsf developmental age and that it should
include instruction about root (base) words.
Purpose of the Current Study
Our study is designed to provide a comprehensive systematic review of available
data on the impact of morphological instruction on literacy outcomes. To do
so, we included a wide search range (expanding on that offered in Reed, 2008). We
included studies reported prior to 1986 and unpublished studies presented at peerreviewed
scientific conferences. To identify all relevant studies, we included studies
even if they did not explicitly state they were investigating morphology (unlike
Reed), as long as the focus on morphology was clear from the description of the
studiesf methods. We included studies that took place in other alphabetic orthographies
(as it turned out, there were studies in Danish, Dutch, and Norwegian),
extending Reedfs exclusive focus on English.
Interpreting results from interventions across languages should be done cautiously
because languages differ in terms of oral and written features. One criterion
the literature uses to distinguish alphabetic languages is the complexity of grapheme
to phoneme correspondences. Languages with consistent grapheme.phoneme
correspondences are considered shallow. Languages in which the grapheme.phoneme
correspondences are complex and inconsistent are labeled deep. Although
English is seen as deep for both spelling and reading, Danish, Dutch, and
Norwegian are seen as moderate on these dimensions (e.g., Borgwaldt, Hellwig,
& de Groot, 2004, 2005; Bosman, Vonk, & van Zwam, 2006; Seymour, Aro, &
Erskine, 2003; Stone, Vanhoy, & Van Orden, 1997). Although there are too few
studies in languages other than English to compare languages statistically, we
judged it more advantageous to include all these languages in our review to provide
a wider sample of studies for this early assessment of morphological interventions.
As noted regarding study selection criteria, we did limit the studies to those
conducted in alphabetic orthographies.
Our study employed a design to facilitate synthesis of this wide variety of data
according to three linguistic layers. Outcomes for all studies were coded as sublexical,
lexical, or supralexical in nature. This categorization system (which is
described in more detail in the method section) allowed us to draw a more finegrained
picture of the effects of instruction. Our design allows us to investigate the
degree to which sublexical instruction transfers up to lexical and supralexical measures.
We expect high variability within and between these categories because of
the application of different treatments to different students and a wide variety of
outcomes. Nevertheless, analyzing effect sizes by these linguistic categories
allows for a principled synthesis of results across a variety of studies to investigate
pertinent
theoretical and practical questions. To investigate ability and age effects,
we categorize studies on those characteristics.
If morphological instruction does transfer from the sublexical to the lexical and
supralexical levels, this transfer is likely to be facilitated by instructional methods
that integrate morphological instruction with other aspects of literacy instruction
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
150
(cf. Salomon & Perkins, 1989). This type of integrated instruction, as opposed to
that which presents morphological knowledge in a more isolated fashion, should
provide more opportunities for guided application of morphological knowledge at
the lexical and supralexical levels. It is also possible that greater application at the
higher levels will work backward to strengthen sublexical skills. To investigate
this, we also categorize the studies with respect to this characteristic.
In summary, this systematic review assesses the evidence for literacy and morphological
gains for elementary students (preschool through Grade 8) through
explicit instruction about morphology. Our research questions are the following:
(a) What are the effects of morphological instruction for sublexical, lexical, and
supralexical measures of reading, spelling, vocabulary, and morphological skills?
(b) Is the effect of morphological instruction different for less able than undifferentiated
children? (c) Does the effect of morphological intervention differ when
conducted with older versus younger students? and (d) Is morphological instruction
more effective when taught in isolation or integrated with other literacy
knowledge and skills?
Method
Study Selection
To identify the relevant studies, the EBSCO Research Complete, PsycINFO,
and WorldCat electronic databases were searched with the following descriptors:
morpholog*, morphem*, interven*, teach*, train*, instruct*, vocabulary, spell*,
read*, base*, root*, prefix*, suffix*, affix*, litera*, dyslex*. More than 1,000
abstracts were identified by December 7, 2009. To be included in the analysis,
studies needed to meet all the following criteria:
1. Published in English, reporting on research carried out in an alphabetic
orthography
2. Investigated instruction with elementary school students (preschool to
Grade 8)
3. Investigated instruction about any element of oral or written morphology
(including prefixes, suffixes, bases or roots, compounds, derivations, and
inflections; studies did not need to mention morphology explicitly, as long
as the role of morphology was clear in the description of the intervention)
4. At least one third of the instruction was focused on morphology, based on
the intervention description
5. Reported literacy outcome measures (including morphological measures)
with means and standard deviations for comparison
6. Used either an experimental and control or comparison group or a training
group with pre- and posttests using measures that could be compared to established
norms (no studies were identified that used a pretest.posttest design
without a comparison group, so this last criterion was not implemented)
Once studies meeting these criteria were identified, experts in the field were contacted
to inquire whether they could identify additional relevant published or
unpublished studies. Reference lists from identified studies were examined for still
more potentially relevant studies. In all, 22 studies met the inclusion criteria; these
are identified with an asterisk in the reference list.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
151
Coding the Studies and Outcome Variables
Studies and outcome variables were coded for characteristics of type of linguistic
outcome measure, participants, and instructional design. We describe each in
turn.
Coding outcomes by linguistic layer. An overarching system of coding outcome
measures was designed to facilitate the synthesis of a wide array of outcomes from
the 22 studies along the dimensions relevant to our research questions. Sublexical
outcomes were defined as tasks that require students to process sublexical features
and that were scored on the basis of sublexical features, even if the stimulus and/
or responses were at the lexical level. Sublexical tasks were further subdivided into
morphological sublexical tasks and nonmorphological sublexical tasks.
Morphological sublexical tasks included oral tasks such as morphological analogy
(walk : walked :: shake :______ (shook); Nunes et al., 1997) or written morphological
tasks in which students select words linked by the base to a cue word (e.g.,
identifying which of the following words ghave a real connectionh to the cue word
create: creative, cream, creature, ate, recreation, crease; Bowers & Kirby, 2006).
Nonmorphological sublexical tasks included phonological awareness, syllable
segmentation, pseudo-word reading, and rhyme recognition.
Lexical outcomes included tasks that target linguistic processing at the word level,
even though participants must process sublexical features to complete them. Lexical
outcome tasks include vocabulary, word reading accuracy or efficiency, spelling, and
word-level orthographic processing tasks such as those in which students choose the
correct spelling of two phonologically plausible options (e.g., rain or rane). Lexical
outcomes were further coded as measures of reading, spelling, or vocabulary.
Supralexical outcomes included tasks that required oral or written processing
beyond the word level. Examples include reading comprehension tasks, syntactic
awareness, and listening comprehension.
Coding of participant characteristics. Studies were first coded to indicate whether
they investigated less able or undifferentiated readers. The authorsf formal identification
of participants (e.g., those with dyslexia or specific language impairment)
or informal designations such as gstudents achieving below expected levelsh
resulted in the coding of gless able.h Samples that failed to select for different ability
levels were coded as gundifferentiated.h Studies were then coded according to
participantsf grade level, either from preschool to Grade 2 or from Grade 3 to
Grade 8. This division is consistent with models of reading development (Ehri,
1995, 1997; Ehri & McCormick, 1998) cited earlier.
Coding of instruction and study characteristics. To investigate our question about
instructional design, each study was coded as using either integrated or isolated
morphological instruction. Studies that combined morphological instruction with
instruction about literacy strategies and knowledge were coded integrated.
Interventions that solely focused on morphological content were coded isolated.
For descriptive purposes, we also coded various aspects of the instruction.
Studies were also coded on two study characteristics to aid analysis of the
reported effects: (a) experimental versus quasiexperimental.that is, random or
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
152
not random assignment of participants to conditions.and (b) comparison group
type.whether treatment groups were compared to untrained control groups
(termed E vs. C comparisons) or to comparison groups which received alternative
treatment (E vs. AT). None of the alternative treatments included any explicit morphological
instruction.
Effect Size as an Index of Treatment Efficiency Across Studies
The effect size statistic used in this study is Cohenfs d, which is calculated as
the difference between the mean posttest score of the treatment group and that of
the comparison group, divided by the pooled standard deviation. An effect size of
1.0 represents a difference of 1 standard deviation between the treatment and comparison
groups. Cohen (1988) provided general benchmarks for effect sizes of 0.2
as small, 0.5 as medium, and 0.8 as large but emphasized that this guideline is
subject to judgment. Thompson (2006) explained that depending on the potential
consequences of a given outcome, small effect sizes could be of large practical
importance, just as large effect sizes could be of little practical significance.
One concern with meta-analyses is that there may exist unpublished studies
with null findings that, if they were included in the calculation of the overall effect
size, would reduce it below the level at which it would be meaningful or useful (the
so-called gfile drawerh problem). Therefore, we indicate in the analyses the number
of null effects (i.e., d = 0.0) that would be required to reduce the effects found
below d = 0.2 (Hunter & Schmidt, 2004). We chose the 0.2 criterion on the basis
of Cohenfs (1988) benchmarks.
Results
Sample Characteristics
Table 1 presents basic information about each study analyzed. This table is
organized by the sample populations studied rather than by publication. Some
publications reported on more than one study (Hurry et al., 2005; Tyler et al., 2003;
Vadasy et al., 2006), and some samples or interventions were used for more than
one study (Bowers & Kirby, 2006, in press; Lyster, 1998, 2002). Table 1 also provides
the identification numbers assigned to each study as a shorthand when discussing
groups of studies. A total of 2,652 students participated across the included
studies, with a range of 16 to 686 participants per study. The 22 studies involved
18 distinct samples; 8 included only less able children, 8 included only undifferentiated
students, and 2 studies (Studies 17 and 18) assessed broad samples of
students and then also divided these samples into more and less able students. Of
the 18 samples, 5 participated in experiments in which individuals were randomly
assigned to conditions; the remainder participated in quasiexperimental designs in
which, for instance, intact classes were assigned to conditions. Most of the interventions
were carried out in English (18 studies), 2 were in Norwegian, 1 was in
Danish, and 1 was in Dutch.
Characteristics of Instruction
Table 2 provides descriptive information about the nature of the morphological
instruction the studies in our sample used. The studies needed to show a substantial
focus on a given aspect of instruction to be identified for that characteristic. Thus,
the absence of a check should not be interpreted to indicate that a given item was
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
153
TABLE 1
Basic study features
Instructional characteristics
Study Reference Language Duration
Instructional group size;
instructor
Isolated or
integrated
instruction Grades N
Ability
level
1 Abbott and Berninger
(1999)
English Total time: 400 min; 16 25-min
sessions; 1 session per week
Individual tutoring;
researcher instructor
Integrated 4, 5, 6, 7 20 LA
2 Arnbak and Elbro (2000) Danish Total time: 540 min; 36 15-min
sessions
Small group (3.4); regular
remedial teacher
Isolated 4, 5 60 LA
3 Baumann, Edwards,
Boland, Olejnik, and
Kamefenui (2003)
English Total time: 450 min; 30 45-min
sessions
Large group (classroom);
regular classroom teacher
Integrated 5 157 UD
4 Baumann et al. (2002) English Total time: 600 min; 12 50-min
sessions;
Large group (classroom);
researcher instructor
Integrated 5 88 UD
5 Berninger et al. (2003) English Total time: 1,680 min (700 min of
morphology or orthographic
instruction); 2-hr sessions on; 14
consecutive weekdays
Groups of 10 (with main
teacher and 2 assistants);
teachers trained by
researchers
Integrated 4, 5, 6 20 LA
6 Berninger et al. (2008) English Total time: 1,680 min (840 min of
morphology or orthographic
instruction); 14 2-hr sessions over
3 weeks
Groups of 10 (with main
teacher and 2 assistants);
teachers trained by
researchers
Integrated 4, 5, 6, 7,
9
39 LA
7 Bowers and Kirby
(2006)
English Total time: 1,000 min; 20 50-min
lessons (3.4 sessions a week)
Large group (classroom);
researcher instructor
Isolated 4, 5 82 UD
8 Bowers and Kirby (in
press)
English Total time: 1,000 min; 20 50-min
lessons (3.4 sessions a week)
Large group (classroom);
researcher instructor
Isolated 4, 5 82 UD
(continued)
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
154
Instructional characteristics
Study Reference Language Duration
Instructional group size;
instructor
Isolated or
integrated
instruction Grades N
Ability
level
9 Henry (1989) English Total time: Group 1: 1,000 min;
Group 2: 2,000 min; 20 40-min
sessions
Large group (classroom);
classroom teacher
Integrated 3, 4, 5 443 UD
10 Hurry et al. (2005)
Study 1
English Total time: NR; 7 sessions,
1 per week
Large group (classroom);
classroom teacher
Isolated 3, 4, 5, 6 686 UD
11 Hurry et al. (2005)
Study 2
English Total time: NR; 13 sessions 1 per
week
Large group (classroom);
classroom teacher
Isolated 4 68 UD
12 Kirk and Gillon (2009) English Total time: 870 min (approx.);
1 individual and 1 group session
per week; range of 16 to 20
sessions
Half individual and half
small group sessions;
researcher instructor
Integrated ages 8.11
years
16 LA
13 Lyster (1998) Norwegian Total time: 510 min; 30 min
sessions 1 per week; 17 sessions
NR Isolated preschool 225 UD
14 Lyster (2002) Norwegian Total time: 510 min; 30 min
sessions 1 per week; 17 sessions
NR Isolated preschool 225 UD
15 Nunes, Bryant, and
Olsson (2003)
English Total time: 360 min; 12 30-min
sessions over 12 weeks
Small group (4.8);
researcher instructor
Isolated 3, 4 457 UD
16 Parel (2006) English Total time: NR; 8 classes over
consecutive school days
Large group (classroom);
instructor: NR
Isolated 3 77 UD
17 Robinson and Hesse
(1981)
English 140 lessons over a full school year Large group (classroom);
instructor: NR
Isolated 7 172 LA and
UD
TABLE 1 (continued)
(continued)
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
155
Instructional characteristics
Study Reference Language Duration
Instructional group size;
instructor
Isolated or
integrated
instruction Grades N
Ability
level
18 Tomesen and Aarnoutse
(1998)
Dutch Total time: 540 min; 2 45-min
sessions per week; over 6 weeks
Group: NR; researcher
instructor
Integrated 4 31 LA and
UD
19 Tyler, Lewis, Haskill,
and Tolbert (2003)
Study 1
English Total time: 900 min; 2 sessions per
week (1 30 min and 1 45 min);
over 12 weeks
Small group (2 or 3);
researcher instructor
Alternative
treatments:
isolated and
integrated
preschool 27 LA
20 Tyler et al. (2003) Study
2
English Total time: 1,800 min; 2 sessions
per week (1 30 min and 1 45
min); over 24 weeks
Small group (2 or 3);
researcher instructor
Integrated preschool 27 LA
21 Vadasy, Sanders, and
Peyton (2006)
English Total time: 2,400 min; 4 30-min
sessions per week; over 20 weeks
Small group; community
tutors (researcher trained)
Integrated 2 31 LA
22 Vadasy et al. (2006) English Total time: 2,160 min; schedule:
NR
Small group; community
tutors (researcher trained)
Integrated 2, 3 21 LA
TABLE 1 (continued)
Note. LA = less able students; UD = undifferentiated students; NR = not reported. Studies 7 and 8 are based on the same intervention and sample. Studies 13 and 14 are based on the
same intervention and sample. Study 13 reported outcome measures at the end of Grade 1 of children taught before school entrance, whereas Study 14 measured a subgroup of those
students in Grades 2 and 3. Study 11 was a substudy (n = 68) of participants in Study 10 (n = 686). Studies 19 and 20 investigated students at two different times of an intervention.
Studies 21 and 22 were from the same published article but reported on separate intervention students.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
156
omitted from the instruction completely, but rather that it was not a substantial
focus of instruction for that study. For example, the instruction in all of the studies
in our sample targeted affixes, but 8 of the 21 studies targeted bases or stems. The
nature of affixes is that they attach to bases and stems, so studies that chose to
focus on instruction about affixes (e.g., Baumann et al., 2002; Baumann et al.,
2003) also addressed bases during instruction, but our table reflects the fact that
the main target of instruction for those studies was affixes.
The information in Table 2 is provided for descriptive purposes. We did not
attempt to quantitatively compare the effectiveness of the various instructional
characteristics because they were not systematically varied and because characteristics
may interact with each other in complex ways. We provide the descriptive
information to clarify the nature of existing research and as a guide for those
designing future studies. Some instructional categories require further clarification.
We distinguished between studies in which instruction merely drew attention
to bases or stems and those in which instruction targeted the meaning of bases or
stems. Drawing attention to the meaning of a base or stem was often the focus of
instruction that helped students identify the base or stem of words, but this was not
always the case. For example, Robinson and Hesse (1981) used tasks that had
students identify the base or stem in complex words, but their focus was spelling
rather than meaning.
The gmorphological tasksh heading in Table 2 identifies specific types of tasks
in which participants engaged. All studies used morphological analysis tasks in
which participants identified morphemes in morphologically complex words.
Some studies also used morphological synthesis tasks in which students were
given morphemes and asked to combine them to form words.
We use the term morphological recognition to describe tasks that had students
find common morphemes that linked sets of two or more words. For example,
Berninger et al. (2003) presented word pairs to students (e.g., respectfully/respect
and pillow/pill) and asked them to identify which word gcame from the other
word.h This task also provides an example of morphological analysis with morphological
foils, as it requires a child to recognize when a letter or sound sequence
that is common to two or more words does not mark a common morpheme (e.g.,
as is the case for pill and pillow).
Morphological production tasks asked students to generate derivations or
inflections without providing the needed morpheme. For example, Nunes et al.
(2003) used an analogy task (e.g., sing : singer :: magic : ?) that required students
to produce a specific derivation of a word but did not provide the needed suffix.
The morphological problem-solving category attempts to indicate tasks that
required students to engage in deeper level processing (Edwards, Font, Baumann,
& Boland, 2004; Templeton, 2004). These tasks require students to apply knowledge
in novel contexts, often with more than one possible route to a solution and
involving the use of deductive or inductive reasoning. For example, Bowers and
Kirby (2006, in press) presented students with sets of morphologically related
words with characteristics which help them deduce morphological suffixing pattern
rules for dropping the silent e, doubling consonants, and changing y to i.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
157
TABLE 2
Characteristics of morphological instruction
Morphological content Morphological tasks
Study
Main
outcome
focus of
instruction
Integrated
morphology
with other
literacy
instruction
Targeted
affixes
(prefixes
and/or
suffixes)
Targeted
bases or
stems
Targeted
base or
stem for
word
meaning
Targeted
bound bases
(e.g., rupt for
break)
Targeted
compound
words
Targeted
word
origin
Oral
morphology
only
Oral and
written
morphology
Targeted
consistent
spelling of
morphemes
despite
phonological
shifts
Targeted
patterns of
orthographic
shifts in
suffixing
patterns
Explicit link
of
morphology
and grammar
Morphological
analysis
Morphological
synthesis
Morphological
recognition:
sorting/
selecting
Morphological
production:
cloze/analogy
Morphological
analysis with
morphological
foils (e.g., Is
there a reprefix
in
renter?)
Morphological
problem
solving
1 Abbott and
Berninger (1999)
R/S ã ã ã ã ã ã ã ã
2 Arnbak and Elbro
(2000)
R ã ã ã ã ã ã ã ã ã
3 Baumann,
Edwards,
Boland, Olejnik,
and Kamefenui
(2003)
V ã ã ã ã ã
4 Baumann et al.
(2002)
V ã ã ã ã
5 Berninger et al.
(2003)
R/S ã ã ã ã ã ã ã ã ã ã
6 Berninger et al.
(2008)
R/S ã ã ã ã ã ã ã ã ã
7 and 8 Bowers and
Kirby (2006, in
press)
M ã ã ã ã ã ã ã ã ã ã ã ã ã
9 Henry (1989) R/S ã ã ã ã ã ã ã ã ã ã ã ã ã
10 and 11 Hurry et
al. (2005) Study
1 and 2
S ã ã ã ã ã ã ã ã ã ã
12 Kirk and Gillon
(2009)
R/S ã ã ã ã ã ã ã ã ã ã ã
13 and 14 Lyster
(1998, 2002)
R/S ã ã ã ã ã ãa ã
15 Nunes, Bryant,
and Olsson
(2003)
R/S ã ã ãb ãb ã ã ã ã ã ã ã
16 Parel (2006) V ã ã ã ã ã
(continued)
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
158
Morphological content Morphological tasks
Study
Main
outcome
focus of
instruction
Integrated
morphology
with other
literacy
instruction
Targeted
affixes
(prefixes
and/or
suffixes)
Targeted
bases or
stems
Targeted
base or
stem for
word
meaning
Targeted
bound bases
(e.g., rupt for
break)
Targeted
compound
words
Targeted
word
origin
Oral
morphology
only
Oral and
written
morphology
Targeted
consistent
spelling of
morphemes
despite
phonological
shifts
Targeted
patterns of
orthographic
shifts in
suffixing
patterns
Explicit link
of
morphology
and grammar
Morphological
analysis
Morphological
synthesis
Morphological
recognition:
sorting/
selecting
Morphological
production:
cloze/analogy
Morphological
analysis with
morphological
foils (e.g., Is
there a reprefix
in
renter?)
Morphological
problem
solving
17 Robinson and
Hesse (1981)
S ã ã ã ã ã ã
18 Tomesen and
Aarnoutse
(1998)
V ã ã ã ã ã ã ã
19 Tyler, Lewis,
Haskill, and
Tolbert (2003)
Study 1
OL ã ã ã ã ã
20 Tyler et al.
(2003) Study 2
OL ã ã ã ã ã
21 Vadasy, Sanders,
and Peyton
(2006) Study 1
R/S ã ã ã ã ã ã ã
22 Vadasy et al.
(2006) Study 2
R/S ã ã ã ã ã ã ã
Note. R = reading; S = spelling; V = vocabulary; M = morphology; OL = oral language.
a. Morphological synthesis conducted only in the context of compounds.
b. Study included a condition with only oral morphological instruction and another with written morphological instruction.
TABLE 2 (continued)
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
159
Calculation, Reporting, and Interpretation of Effect Sizes
Outcomes were categorized by linguistic layer and by type of comparison
group, producing eight distinct average effect sizes. The four linguistic layers are
(a) morphological sublexical, (b) nonmorphological sublexical, (c) lexical, and (d)
supralexical. The first comparison type was experimental morphology treatment
(E) versus untrained comparison group (C) that received typical classroom instruction.
The other comparison type was E versus a comparison group for which the
researchers provided special alternative training (AT).
It is difficult to generalize about the ATs because they were different from each other
and need to be considered with respect to the linguistic level of the outcomes. Across
the 22 studies, there were 22 nonmorphological, sublexical outcomes for E versus AT
comparisons. In 16 of those 22 instances, the AT emphasized phonologically oriented
instruction, for example, in phonological awareness. Of the 75 lexical outcomes for E
versus AT comparisons, 31 involved ATs with a phonological focus and 32 involved
vocabulary instruction. There were 9 outcomes in the supralexical linguistic layer that
used ATs. Of these, 5 emphasized phonological instruction, 3 vocabulary instruction,
and 1 study skills. In general, the ATs represented established intervention methods
with a record of positive outcomes rather than placebo-like attempts to control for
instructional time and teacher attention that were not expected to produce positive
results. Performing equivalently to these ATs would indicate that morphological
instruction is as successful as other more established methods. Furthermore, it is
important to acknowledge that almost all of the gcontrolh groups received some form
of regular classroom instruction during the times when the E children received morphological
instruction; thus, each C group is also an AT group to some extent, representing
a standard practice comparison group. We would argue that the E versus C
comparisons represent the cleanest test of the effect of adding morphological instruction
to regular classroom instruction, whereas the E versus AT comparisons test the
effects of morphological instruction against those of other established experimental
methods that may not be typical of regular classrooms.
Average effect sizes for these categories are reported in Table 3, as are the standard
deviations of the effect sizes, the number of effects included in the average,
the range of effect sizes, and the number of null effects that would be required to
reduce the average effect to 0.2. Posttest means and standard deviations reported
in the studies were used to calculate effect sizes with an effect size calculator (Coe,
2000).2 Random assignment was used with six of the samples investigated by 7 of
the 22 studies (Studies 1, 5, 6, 12, 13, 14, and 20 in Table 1). Where possible, effect
sizes were calculated with adjusted posttest means that statistically controlled for
group difference at pretest.3
Effects of Morphological Instruction
We begin addressing our first research question by reporting the overall average
instructional effects by linguistic layer. Then we present the instructional effects
within the literacy areas of reading, spelling, and vocabulary for the lexical layer.
Overall effects by linguistic layer. Table 3 presents the overall average effect sizes
because of morphological instruction for each linguistic category. For E versus C
comparisons, the strongest average instructional effects were for morphological
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
160
TABLE 3
Overall average effect sizes by linguistic categories and comparison group
Linguistic category of outcome variable
Sublexical
Morphological Nonmorphological Lexical Supralexical
Comparison groups E vs. C E vs. AT E vs. C E vs. AT E vs. C E vs. AT E vs. C E vs. AT
Cohenfs d 0.65 0.51 0.34 0.08 0.41 0.12 0.28 .0.08
SD 0.72 0.55 0.37 0.34 0.48 0.47 0.26 0.30
Number of effects 37 11 26 22 93 75 12 9
Range .0.13, 3.56 .0.34, 1.55 .0.37, 1.22 .0.53, 0.97 .0.58, 1.88 .0.78, 1.59 .0.02, 0.97 .0.54, 0.39
Null effects 83.3 17.1 18.0 . 97.5 . 4.8 .
Note. E = experimental group; C = control group; AT = alternative treatment group. Null effects indicates the number of effects with d = 0.0 required to reduce d to 0.20 (not calculated
if d is already 0.20 or less).
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
161
sublexical outcomes, followed by lexical and then supralexical outcomes. The null
effects calculation reinforces the strength of the sublexical morphological and
lexical effects. In E versus AT comparisons, the sublexical morphological effect
remained substantial, but the others were much weaker. These findings are corroborated
by null effects statistics.
Morphological sublexical outcomes showed the highest average effect size,
0.65 (SD = 0.72). This average, drawn from 37 outcomes, is halfway between
Cohenfs (1988) benchmarks for medium and large effects. The high SD reveals a
wide variety of scores. For E versus AT, d is 0.51, still a medium effect size. A
smaller effect (d = 0.34, SD = 0.37) was found for nonmorphological sublexical
measures in E versus C comparisons (26 outcomes). The lexical category (E vs. C)
approached the medium benchmark with an average instructional effect of 0.41
(SD = 0.48) based on 93 outcome measures. The average instructional effect for
the far transfer category of supralexical effects, based on 12 outcome measures,
was small (0.28, SD = 0.26). The E versus AT ds for the last three linguistic levels
were close to 0, indicating that morphological treatments were roughly equal in
their effectiveness to the alternative treatments.
Reading, spelling, and vocabulary outcomes at the lexical layer. The overall
effects at the lexical linguistic layer reported in Table 3 and addressed in the previous
section reflect the combined average of effects across word reading, spelling,
and vocabulary tasks. Table 4 pulls these effects apart to reveal effects on these
different literacy outcomes.
Word reading tasks such as word identification, speed of real word reading, and
orthographic tasks including real words (e.g., choosing the correct spelling of two
phonologically plausible spellings such as taik and take) were considered lexical
reading tasks. Results under the greadingh heading in Table 4 show that lexical
reading measures for E versus C comparisons had a modest instructional effect (d
= 0.41, SD = 0.45) and that the E versus AT effect was close to 0. The average
instructional effect for lexical spelling outcomes (d = 0.49, SD = 0.48) is approximately
the same, and again the E versus AT effect is close to 0. The instructional
effects for vocabulary measures (d = 0.35, SD = 0.51) were slightly lower than
those for the lexical reading and spelling outcomes, but the E versus AT effect was
larger at d = 0.20. A substantial number of null effects would be needed to reduce
the moderate effects for E versus C comparisons; the E versus AT comparisons
were already at the d = 0.20 level or lower.
The Effects of Morphological Instruction for Undifferentiated and
Less Able Children
Table 5 presents the results for undifferentiated and less able students according
to the four linguistic levels (see Table 1 for the ability level coding for each study
and study reference numbers). Effect sizes for less able students were drawn from 11
studies (1, 2, 5, 6, 12, 17, 18, 19, 20, 21, and 22). Effect sizes for gundifferentiatedh
samples were drawn from 13 studies (3, 4, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17
and 18).
Results in Table 5 show that average effect sizes for every linguistic level and
for both E versus C and E versus AT comparisons were higher for the less able
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
162
TABLE 4
Average instructional effect sizes by comparison group for literacy outcomes
Literacy outcome (lexical variables)
Reading Spelling Vocabulary
Comparison
groups E vs. C E vs. AT E vs. C E vs. AT E vs. C E vs. AT
Cohenfs d 0.41 0.05 0.49 0.05 0.35 0.20
SD 0.45 0.32 0.48 0.37 0.51 0.60
Number of
effects
39 34 21 9 34 32
Range .0.58, 1.88 .0.52, 0.76 .0.31, 1.88 .0.48, 0.78 .0.20, 1.76 .0.78, 1.59
Null effects 40.9 . 30.4 . 25.5 .
Note. See note to Table 3 for notes regarding abbreviations.
readers than those found for undifferentiated students. For the comparison of E
versus C, effects favored the less able for morphological sublexical (0.99 vs. 0.65),
nonmorphological sublexical (0.63 vs. 0.27), lexical (0.58 vs. 0.40), and supralexical
(0.67 vs. 0.27). E versus AT effect sizes were in general smaller but still
favored the less able participants. This consistent advantage for the less able students
needs to be interpreted carefully. One important confound is that, except for
the study by Robinson and Hesse (1981), all of the data for less able students were
gathered from interventions that used small group or individual instruction. Of the
13 studies from which undifferentiated student data were drawn, 8 studies used
whole class instruction. Thus, the increased average effects for the less able groups
may be attributable, in whole or in part, to small group instruction.
The Effects of Morphological Instruction for Younger and Older Students
Six studies (13, 14, 19, 20, 21, 22) from our sample of 22 interventions involved
students from preschool to Grade 2. These six studies represent four sample populations.
The 15 remaining studies involved students in Grades 3 to 8. Although our
sample has fewer studies coded as gyoungerh than golder,h we judged this distribution
to be sufficient to shed light on our third research question, particularly given
its theoretical importance.
Table 6 presents results by linguistic category for preschool to Grade 2 students
compared to Grade 3 to Grade 8 students. In the sublexical morphological category
for E versus C comparisons, there were only 2 outcome measures for younger
students compared to 35 for older students. Thus, the advantage for younger students
(d = 1.24, SD = 0.41 vs. d = 0.62, SD = 0.72) should be interpreted cautiously,
though more than 10 null effects would be required to reduce this effect to 0.2. In
the E versus AT comparison, the effect was similar for the younger children but
lower for the older ones. For nonmorphological sublexical measures, younger students
showed a medium effect of 0.49 compared to a small average effect of 0.24
for older students in the E versus C comparisons. The results were weakly reversed
for the E versus AT comparisons. The lexical level also showed an advantage for
younger students (d = 0.57, SD = 0.48) compared to older students (d = 0.37, SD
= 0.48) in the E versus C comparisons but not in the E versus AT comparisons. At
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
163
TABLE 5
Average instructional effect sizes by linguistic category and comparison group for less able and undifferentiated students
Linguistic category of outcome variable
Sublexical
Morphological Nonmorphological Lexical Supralexical
Comparison groups E vs. C E vs. AT E vs. C E vs. AT E vs. C E vs. AT E vs. C E vs. AT
A. Less able students
Cohenfs d 0.99 1.25 0.63 0.25 0.57 0.24 0.67 0.39
SD 0.87 0.27 0.54 0.51 0.54 0.48 0.56 0
Number of effects 9 3 5 7 24 15 6 1
Range 0.1, 2.38 1.06, 1.55 .0.04, 1.22 .0.53, 0.97 .0.58, 1.61 .0.52, 0.78 0.17, 1.71 0.39, 0.39
Null effects 35.5 15.7 10.7 1.8 44.4 3.0 14.1 1.0
B. Undifferentiated
students
Cohenfs d 0.65 0.24 0.27 0.00 0.40 0.08 0.27 .0.15
SD 0.77 0.31 0.29 0.20 0.50 0.46 0.29 0.23
Number of effects 30 8 21 15 72 60 9 8
Range .0.13,
3.56
.0.34,
0.75
.0.37, 0.71 .0.40, 0.30 .0.31, 1.88 .0.78, 1.59 .0.02,
0.97
.0.54,
0.20
Null effects 67.5 1.6 7.4 . 72.0 . 3.2 .
Note. See note to Table 3 for notes regarding abbreviations.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
164
the supralexical level, there were fewer outcome measures for younger and older
students. The two age groups had a similar small advantage in the E versus C
comparisons (older: d = 0.29, SD = 0.40; younger: d = 0.27, SD = 0.14), but very
few null effects would be required to reduce this effect, and this advantage disappeared
in the E versus AT comparisons. Results in Table 6 indicate that in general
the preschool to Grade 2 students gain as much or more than the older students
across lexical categories in the E versus C comparisons. For the E versus AT comparisons,
the younger students have an advantage only in the sublexical morphological
outcomes.
The Effects of Integrated Versus Isolated Morphological Instruction
The fourth research question concerned the dimension of integrated versus
isolated morphological instruction. Integrated morphological interventions were
those in which morphological instruction was integrated with other instruction,
whereas isolated morphological interventions targeted only morphological content.
Table 2 indicates how each study was coded on this dimension.
The results are presented in Table 7. With the exception of the E versus C comparison
for sublexical morphological outcomes, in which isolated instruction was
more successful (0.67 vs. 0.55), all of the comparisons favored integrated instruction.
The E versus AT comparisons for morphological sublexical linguistic outcomes
showed a strong effect for integrated instruction (d = 1.25) compared to a
small effect (d = 0.24) for isolated instruction, though these effects were based,
respectively, on only three and eight outcomes.
Discussion
This systematic review investigated the effects of morphological instruction on
literacy outcomes categorized into sublexical (morphological and nonmorphological),
lexical, and supralexical categories. We calculated the average effect sizes
in these categories for (a) overall samples, (b) less able versus undifferentiated
samples, (c) younger (preschool.Grade 2) versus older students (Grades 3.8), and
(d) samples that received morphological instruction in isolation compared to morphological
instruction integrated with other literacy instructional strategies. We
considered two types of effects, those found comparing morphological instruction
with a control group that received nothing other than regular classroom instruction
and those found comparing morphological instruction with some alternative treatment.
Before addressing the research questions, we can make two general observations
about the corpus of studies that we located. First, although research on morphology
and literacy is increasing, we were able to locate only a relatively small
number of instructional studies (n = 22). Although this number is larger than that
identified by Reed (2008), there is clearly need for more studies particularly across
age and ability levels. Second, with respect to research design, there were a number
of examples of random assignment of individuals to instructional conditions
(Abbott & Berninger, 1999; Berninger et al., 2003; Berninger et al., 2008; Kirk &
Gillon, 2009; Lyster, 1998, 2002; Tyler et al., 2003), though many of the other
investigators did manage to randomly assign classes. Given that most studies
saw morphological instruction as a part of regular classroom instruction and that
the instruction usually took place over several weeks or more, the proportion of
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
165
TABLE 6
Average instructional effect sizes by linguistic category and comparison group for preschool to Grade 2 versus Grade 3 to
8 students
Linguistic category of outcome variable
Sublexical
Morphological Nonmorphological Lexical Supralexical
Comparison groups E vs. C E vs. AT E vs. C E vs. AT E vs. C E vs. AT E vs. C E vs. AT
A. Preschool.Grade 2
Cohenfs d 1.24 1.25 0.49 .0.16 0.57 .0.07 0.27 .0.22
SD 0.41 0.27 0.44 0.16 0.48 0.17 0.14 0.22
Number of effects 2 3 10 7 19 11 7 5
Range 0.95, 1.53 1.06, 1.55 .0.37, 1.22 .0.4, 0.03 .0.31, 1.88 .0.33, 0.23 0.09, 0.51 .0.54, -0.02
Null effects 10.4 15.7 14.5 . 35.2 . 2.45 .
B. Grade 3.Grade 8
Cohenfs d 0.62 0.24 0.24 0.20 0.37 0.15 0.29 0.08
SD 0.72 0.31 0.28 0.35 0.48 0.49 0.40 0.29
Number of effects 35 8 16 15 74 64 5 4
Range .0.13, 3.56 .0.34, 0.75 .0.11, 0.71 .0.53, 0.97 .0.58, 1.88 .0.78, 1.59 .0.02, 0.97 .0.28, 0.39
Null effects 73.5 1.6 3.2 . 62.9 . 2.25 .
Note. See note to Table 3 for notes regarding abbreviations.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
166
TABLE 7
Average instructional effect sizes by linguistic category and comparison groups for integrated morphological instruction versus
isolated morphological instruction
Linguistic category of outcome variable
Sublexical
Morphological Nonmorphological Lexical Supralexical
Comparison groups E vs. C E vs. AT E vs. C E vs. AT E vs. C E vs. AT E vs. C E vs. AT
A. Integrated instruction
Cohenfs d 0.55 1.25 0.49 0.27 0.46 0.22 0.37 0.39
SD 0.58 .27 0.38 0.53 0.45 0.52 0.21 .
Number of effects 5 3 12 7 31 28 2 1
Range 0.11, 1.53 1.06, 1.55 .0.01, 1.22 .0.53, 0.97 .0.58, 1.05 .0.52, 1.15 0.22, 0.51 0.39, 0.39
Null effects 8.75 15.7 17.4 2.45 40.3 2.8 1.7 .95
B. Isolated instruction
Cohenfs d 0.67 0.24 0.20 0.00 0.38 0.05 0.26 .0.15
SD 0.74 0.31 0.31 0.20 0.50 0.44 0.28 0.23
Number of effects 32 8 14 15 62 46 10 8
Range .0.13, 3.56 .0.34, 0.75 .0.37, 0.85 .0.4, 0.30 .0.31, 1.88 .0.78, 1.59 .0.02, 0.97 .0.54, 0.2
Null effects 75.2 1.6 . . 55.8 . 3.0 .
Note. See note to Table 3 for notes regarding abbreviations.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
167
studies with random assignment of individuals seems reasonable. In future studies,
more random assignment may be possible in small group instruction studies.
The Effects of Morphological Instruction
To summarize our findings, when we consider the results across all available
studies (Table 3), it is clear that morphological instruction has its greatest effects
at the sublexical morphological level. This indicates that morphological instruction
was successful in improving morphological abilities, whether compared to
control or alternative treatments. The null effects necessary to reduce the d to 0.2
for morphological outcomes support this finding. At the other linguistic levels in
the overall analysis, the effects ranged from small to moderate in the experimental
versus control comparisons and were negligible in the experimental versus alternative
treatment comparisons. There was a consistent moderate effect of morphological
instruction in the experimental versus control comparisons. When effects
were separated by ability and age of student and type of instruction (integrated vs.
isolated), more detail was revealed. Experimental versus control effects were
stronger for the younger students, but this was not true for the experimental versus
alternative treatment comparisons. There were stronger effects for the less able
participants in both types of comparison and also for those studies that integrated
morphological instruction with other literacy instruction. The picture that emerges
is that morphological instruction is particularly effective when integrated with
other literacy instruction and aimed at less able and perhaps younger readers.
We need to consider why the effects were often (but not always) greater in the
experimental versus control rather than the experimental versus alternative treatment
comparisons. There are basically two reasons for including alternative treatments
in a research design, either (a) to control for extraneous effects (e.g.,
Hawthorn effects or instructor attention) that are not part of the phenomenon being
investigated or (b) to investigate the effects of an alternative treatment that is
meaningfully designed to affect aspects of the outcomes. Most of the comparisons
that we categorized as experimental versus control did not involve true control
groups in the classic sense. Instead of receiving nothing that the experimental
group did not receive, these groups typically received more regular classroom
instruction. As such, these groups may be considered as galternative treatmentsh
too. Most of the alternative treatments employed in these studies appear to have
been designed to achieve the second objective; the majority addressed phonological
processing or vocabulary. Phonologically oriented instruction is well developed,
widely regarded as a solid basis for learning to read words, and especially
recommended for students with reading difficulties (National Reading Panel,
2000; Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2001). Similar points
could be made about vocabulary instruction (Beck, McKeown, & Kucan, 2002;
Biemiller & Boote, 2006; Graves, 2004). Accordingly, it is not surprising that the
alternative treatments in our sample provided effective instruction. That morphological
instruction generally was as successful as these alternative treatments provides
evidence that morphological instruction, a relatively new focus of
instructional research, brings benefits comparable to those of instruction designed
on the basis of extensive research. Our conclusion is that morphological instruction
was effective at the morphological sublexical and lexical levels but that
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
168
beyond the sublexical morphological level it was often no more effective than
other well-established instructional methods.
There was considerable variability associated with many of the effects, and in
some cases relatively few null studies would be required to reduce the effects
below the benchmark of 0.2. There were also instances of negative effects in some
studies and weak negative average effects, the latter being largely in alternative
treatment comparisons at the supralexical linguistic layer (see Tables 3 to 6). This
high variability suggests that some studies employed methods of instruction that
were better than others. It will be an important task for future research to determine
which types of morphological instruction are most beneficial and how these
can best be combined with other forms of instruction (e.g., in phonology and
vocabulary).
Understanding the Effects of Morphological Instruction
At the outset we hypothesized as to why, in theory, morphological instruction
might bring additional benefits to literacy instruction. We argued that instruction
about meaning bearing sublexical elements might produce word knowledge that
could transfer up to lexical and supralexical skills. We found that instruction about
sublexical morphological elements brought measurable literacy effects compared
to controls, and those effect sizes reflected the level of transfer from instruction.
Morphological instruction performed comparably to the alternative treatments at
the higher linguistic levels. Morphological instruction was more effective for less
able learners, and when it was integrated with other aspects of literacy instruction;
there was some evidence that it was more effective for younger learners.
One way of understanding these results is to conceptualize sublexical morphological
knowledge as a mechanism for strengthening learnersf lexical representations
(Carlisle & Katz, 2006; Carlisle & Stone, 2005). The lexical quality
hypothesis (Perfetti, 2007; Perfetti & Hart, 2001, 2002) is one potentially fruitful
framework through which to understand the effects of morphological instruction,
as is the association of untaught morphological knowledge and literacy skills (e.g.,
Carlisle, 2003; Deacon & Kirby, 2004). In describing the lexical quality hypothesis,
Perfetti (2007) presented five features of lexical representation that determine
lexical quality. The first four, orthography, phonology, grammar, and meaning, are
constituents of word identity, and the fifth, constituent binding, gis not independent
but rather a consequence of the orthographic, phonological and semantic constituents
becoming well specified in association with another constituenth (pp. 360.
361). Knowledge of how oral and written morphology work in a given language
could be understood as a binding agent that pulls together these individual features
of lexical representation to enhance lexical quality. The word binding is an appropriate
way to describe how written morphological structure links families of words
with consistent orthographic patterns. The letter patterns for morphemes are associated
with phonological representations, and they can also provide grammatical
cues. In fact, each of the features of lexical quality identified by Perfetti has direct
associations with oral and written morphological elements. If sublexical morphological
knowledge acts as a constituent binding feature of lexical quality, increasing
that sublexical morphological knowledge through instruction should facilitate
the efficient retrieval of word identities, which in turn should result in improved
scores on lexical measures, as we found in this review.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
169
Perfetti (2007) also argued that lexical quality is important for reading comprehension
(supralexical performance). He suggested that the source of the ability to
efficiently retrieve the words needed during reading is the integrated orthographic,
phonological, grammatical, and semantic word knowledge that the reader has for
a given word.the quality of that wordfs lexical representation. If morphological
instruction increases lexical quality, those stronger mental representations could
improve reading comprehension by (a) increasing efficiency of word identification,
thereby reducing the cognitive load needed for processing and integrating
connected text, and (b) providing the reader with easier access to semantic information
associated with that word. The reading comprehension gains from morphological
instruction should be less robust than the lexical gains, at least in the short
term, but if morphological instruction does improve lexical quality, it should
become apparent in reading comprehension measures, and that is what we found.
The instruction investigated in this review addresses aspects of word knowledge
that directly bear on efficient processing of words and meanings during reading.
Perfetti (2007) stated, gUnderlying efficient processes are knowledge
components; knowledge about word forms (grammatical class, spellings and pronunciations)
and meanings. Add effective practice (reading experience) of these
knowledge components, and the result is efficiency: the rapid, low-resource
retrieval of a word identityh (p. 359). The interventions reviewed in this study used
instruction that explicitly targeted knowledge about oral and written morphological
features of words. Morphemes are characterized by consistent spelling patterns
but are also associated with pronunciations and meanings, and they may also mark
grammatical cues. Explicit morphological instruction offers teachers a way of
directly targeting the development of lexical quality. Such cognitive processing
itself may function to strengthen mental representations and decrease cognitive
load (e.g., Schnotz & Kurschner, 2007; Sweller, 1988) in reading.
However, explicit morphological instruction is not required for morphological
knowledge to develop and play a role in developing lexical quality. This is demonstrated
in the correlational or predictive studies we reviewed briefly at the beginning
of this article (for a more extensive review, see, e.g., Carlisle, 2003). In the
absence of explicit instruction in morphology, children develop considerable competence
in it, and this competence is related to success in literacy. There is also
evidence that simple exposure to the consistent underlying structures that integrate
morphological families improves the quality of our lexical representations. Nagy,
Anderson, Schommer, Scott, and Stallman (1989) found that adults read words
from larger morphological families more fluently than words from small families
and cited this as evidence that words are processed through morphological relationships,
not as separate entities (for similar results with children, see Carlisle &
Katz, 2006). Citing the work of Taft and colleagues with adult readers (e.g., Taft,
2003; Taft & Kougious, 2004; Taft & Zhu, 1995), Carlisle and Stone (2005)
described the role of uninstructed experiences with morphology on lexical
representations
by concluding that gfrequent encounters with a base word (by itself
or combined with affixes in words) reinforce the mental representation of the morphemes
in those words, and access to memory for the morphemes speeds identification
of words containing those morphemesh (p. 431).
Untaught morphological knowledge may also lie behind the relative weakness
of the instructional effects beyond the sublexical level. Some children in the
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
170
control or alternative treatment groups may have developed enough morphological
knowledge to support their lexical and supralexical processing, so that they perform
as well as children who received explicit morphological instruction at these
levels. This may also be related to the stronger effects we found for less able readers
(see the next section). Morphological instruction that was sustained and integrated
with other literacy instruction over an extensive period of time may show
greater transfer.
Reading Ability Effects
In response to our second research question, we found that the effects of morphological
instruction were stronger on average in groups of less able readers than
in more broadly based samples. Reed (2008) came to the same conclusion from a
smaller set of studies. We see four plausible explanations for this pattern. First, the
more able readers may already have known at least implicitly some of the morphological
content being taught and so would not differ as much from the comparison
groups as the poor readers, who initially were likely to know little of the content
being taught. Less able readers may need more explicit instruction. Second, the
studies involving less able learners generally used small groups rather than classsized
groups in their instruction. Although smaller group sizes are representative
of remedial instruction, it is possible that this approach would also have been more
successful with the more able learners.
The third interpretation is that morphology is a cognitive domain that is a relative
strength for less able readers. A common characteristic of struggling readers
is weak phonological awareness (e.g., National Reading Panel, 2000). Casalis et
al. (2004) suggested that dyslexics may use (untaught) morphological knowledge
as a compensatory strategy and that introducing explicit morphological instruction
could build on a relative strength for dyslexic learners; the same may be true for
other less able readers. A phonological processing deficit may be less of a hindrance
to developing higher quality lexical representations if explicit instruction
in morphological structure builds up an integrated lexical representation of orthographic
patterns and meaning cues to which phonological associations can be
linked. Making the written morphological structures more salient could scaffold
more effective use of phonological knowledge for less able readers. In effect,
explicit instruction about sublexical morphological structures and how they link to
orthographic, semantic, phonological, and grammatical cues may activate the constituent
binding quality offered by morphology (see the earlier discussion of
Perfettifs, 2007, lexical quality hypothesis). Phonological processing deficits may
be less of an impediment when students are explicitly shown how phonological
structures link to linguistic structures for which these students have no processing
deficit.
Findings from one intervention in our review illustrate how morphology might
act as a binding agent of multiple features for less able readers. Arnbak and Elbrofs
(2000) intervention with Danish dyslexic students was restricted to oral instruction,
and yet their strongest results were for measures of spelling, and this was
despite the fact that the control groups had more practice with written words in
their typical remedial instruction. They hypothesized that awareness of morphemic
units in words facilitated the segmenting of complex words into linguistic units
they knew how to spell and that this process may have also eased the load on
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
171
verbal working memory. Morphological instruction may have facilitated the ability
to maintain meaningful units of words (morphemes) in working memory while
spelling, which may be another consequence of increased binding.
The fourth explanation of why morphological instruction was more effective
for less able readers is through providing increased motivation to work with words.
A number of authors of the studies in this sample commented on the enthusiasm
children showed during morphological instruction; increased motivation and
improved literacy skills may mutually support each other (e.g., Berninger et al.,
2003; Bowers & Kirby, in press; Tomesen & Aarnoutse, 1998). Without measures
for motivation, however, this explanation remains speculative. The ability and
motivation to explore language independently, gword consciousness,h is a frequently
emphasized goal of vocabulary instruction (Graves, 2006; Scott & Nagy,
2004; Stahl & Nagy, 2006). Less able readers are likely to have had more frustrating
experiences in school trying to understand how written words work. Introducing
morphology as an organized system that links words even when pronunciation
shifts appear irregular (e.g., heal/health, sign/signal) may motivate struggling students
to study words more closely. Studying morphological families of words also
has the advantage of exposing struggling older students to advanced, complex
vocabulary with the support of connected words they do know. For example,
studying the sign family can be used to introduce words such as design, designate,
insignia, significantly, and assignment. Studying the structure and meaning connections
in these words builds lexical representations in a way that does not require
struggling readers to process long passages of text.
Further research will be required to select among these explanations for the
greater effectiveness of morphological instruction with less able readers. It is also
possible that more able readers would show increased benefit from morphological
instruction if it were tailored to their strengths.
Grade-Level Effects
The answer to our third research question was that morphological instruction
was at least as effective for students in the early stages of formal literacy instruction
as it was for students in later grades (see Table 6). These findings challenge
the assertion by Adams (1990) that gteaching beginning or less skilled readers
about them [roots and suffixes of morphologically complex words] may be a mistakeh
(p. 152). Evidence that morphological instruction brings benefits to younger
students and that this instruction brings special benefits to less able students could
have important practical implications. With a foundation of morphological knowledge
gained with the support of instruction from the start, it is possible many
students
who fail in response to typical instruction could achieve much stronger
success.
A striking example of the potential of early and sustained morphological
instruction comes from Lysterfs (1998, 2002) study with Norwegian children. She
investigated the effects of morphological and phonological interventions compared
to a control group with students prior to school entry. She found a very large
effect of morphological instruction (d = 1.88) on a word reading measure 6 months
after the intervention stopped. The phonological intervention group showed a
gain of d = 0.82 on this same measure. Compared to controls, she also found a
significant difference for the morphological group (effect sizes not provided) on
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
172
an orthographic coding task in Grades 2 and 3. Although there were relatively few
intervention studies with young children, the magnitude of the possible effects
suggests that further studies be conducted.
Effects of Methods of Instruction
The fourth research question asked whether instruction that integrated morphology
with other aspects of literacy instruction would differ in its effects from
isolated instruction. For the majority of outcome comparisons, including those
with alternative treatments, integrated instruction was more effective than isolated
instruction, and in the other cases the effects were similar (see Table 7). Integrated
instruction should facilitate construction of lexical representations in which phonological,
orthographic, grammatical, and semantic information is linked to morphological
information. By generating richer lexical representations, instruction
that integrates morphological and other linguistic features should facilitate lexical
access and thus enhance the binding role of morphology, more so than would be
accomplished by isolated instruction.
Vocabulary is one of the most obvious other areas of literacy instruction to
integrate with morphological instruction. Despite the importance of vocabulary
instruction cited by National Reading Panel (2000), there is a growing recognition
that vocabulary instruction has received insufficient attention in classroom instruction
and literacy research (Beck et al., 2002; Biemiller & Boote, 2006). Because
morphemes, when encoded in print, are fundamentally orthographic representations
of sublexical and lexical meaning units that occur in multiple words, written
morphological instruction may provide a generative component within vocabulary
instruction, supporting transfer to the learning of new words (Bowers & Kirby, in
press).
The final point to be made about methods of instruction concerns the problemsolving
approach adopted in four of the studies reviewed here (Baumann et al.,
2003; Berninger et al., 2003; Bowers & Kirby, 2006, in press; Tomesen &
Aarnoutse, 1998). Each of these studies used the theme of gdetectivesh to frame
their instruction, designed to enhance student motivation. Although not one of our
research questions, the inclusion of a problem-solving approach may be a critical
feature in obtaining transfer beyond the morphological sublexical level. Although
there were not enough appropriate studies to assess this possibility quantitatively,
the problem-solving approach appears to be worth further investigation. This
instructional strategy may have its effect in part by increasing studentsf focus on
the working of words while fostering the deeper processing associated with more
effective long-term learning. Employing problem-solving tasks about spelling.
meaning connections (Templeton, 2004) should also develop the constituent binding
feature in Perfettifs (2007) lexical quality hypothesis by targeting the juncture
of semantics, orthography, and phonology during an engaging task.
Limitations, Future Directions, and Conclusions
Several limitations deserve noting. First, this review was limited by the number
of studies available. If there had been more studies in the literature, further research
questions could have been addressed and the variability we observed in the effects
may have been reduced. There is a need for more fine-grained studies of morphological
instruction, to determine how to maximize its effects. We have presented a
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
173
descriptive listing of the methods used in Table 2; these are some of the instructional
parameters that could be varied in future studies. One question in particular
that deserves further attention is the optimal ratio of relatively procedural tasks
(i.e., relatively specific tasks that have been demonstrated in class, with single
correct answers and obvious strategies) to more open-ended problem-solving
activities (those that require the students to go beyond tasks they have been shown,
in which there may be multiple correct answers and various solution strategies).
Another question lies in aptitude.treatment interactions, particularly given that
particular instructional programs may suit some learners more than others. Second,
we were not able to make cross-linguistic comparisons because of the relatively
small number of studies in orthographies other than English. As more morphological
interventions are conducted, it may be fruitful to investigate the effect of
morphological instruction in different languages. It may be useful to compare the
effects of morphological instruction in languages whose scripts differ in phonological
transparency. Third, the decision to exclude research in nonalphabetic languages
means that our review does not include morphological research in other
writing systems. This is a particularly interesting question for future research,
given the suggestion of the importance of morphological processing in morphosyllabic
writing systems (e.g., McBride-Chang et al., 2005). Future research on the
effectiveness of morphological interventions in nonalphabetic languages could be
conducted and compared to see if the effects follow a similar or different pattern
than we found here.
A third limitation is that most studies worked with whole classes; where there
were small groups taught, these were usually within the context of remedial
instruction. This difference in purpose, regular versus remedial instruction, tended
to confound learner ability with group size, necessitating caution in drawing conclusions
about ability effects. More studies that vary ability and group size independently
are needed.
Overall, we found that morphological instruction made a positive contribution
to literacy outcomes, but there are several caveats that need to be attached to this
conclusion. First, as we detailed in our analyses, the effects were stronger for less
able readers and for those who received integrated instruction; there was a tendency
for studies with younger children to be more powerful, but there were not
enough studies to state this with confidence. Second, there was only limited evidence
of transfer to the lexical and supralexical levels. It is plausible that this is in
part because of the relatively undeveloped state of morphological instructional
methods and how unfamiliar morphological knowledge is for most children. Our
evidence indicates that instruction is more effective when it is integrated with other
aspects of literacy instruction; we suggest that morphological instruction needs to
be embedded in the curriculum in a sustained manner rather than being added as a
temporary patch. We also suggest that integration of problem-solving techniques
may contribute to transfer of morphological knowledge. Finally, we suggest that
morphological instruction has more potential than has yet been realized. We look
forward to new attempts to refine this promising instructional method.
Notes
We thank the following people for their responses to our requests for assistance in
the completing of this article: Anna M. T. Bosman, Peter Bryant, Joanne F. Carlisle,
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
174
Carsten Elbro, Marcia K. Henry, Solveig-Alma H. Lyster, Catherine McBride-Chang,
and Deborah K. Reed. This study was supported by funding from the Social Sciences
and Humanities Research Council of Canada and the Canadian Language and Literacy
Research Network.
1The terms base and root are often used interchangeably. Base is used in this article
because it is specifically morphological, whereas root also refers to word origin (etymology).
2For Nunes, Bryant, and Olsson (2003), standard deviations were calculated from
standard error scores before calculating effect sizes. For Berninger et al. (2008), effect
sizes were calculated from F values. No effect size calculations were conducted for the
two studies from Tyler, Lewis, Haskill, and Tolbert (2003) because they reported
means and standard deviations of percentage change in scores. Because they reported
Cohenfs d and significance values, those statistics were taken from their calculations.
The two studies by Hurry et al. (2005) reported raw means, but they also reported effect
sizes, based on regression calculations that accounted for pretest differences. Their
reported effect sizes were used instead of calculating effects from raw means.
3A master results table, which includes (a) outcomes for each individual measure
involved in the synthesis, (b) information about whether effect sizes were calculated
on raw or adjusted means, and (c) what variables were controlled in the original studies,
is available from the authors.
References
References marked with an asterisk indicate studies included in the meta-analysis.
*Abbott, S. P., & Berninger, V. W. (1999). Itfs never too late to remediate: Teaching
word recognition to students with reading disabilities in grades 4.7. Annals of
Dyslexia, 49, 223.250.
Adams, M. J. (1990). Beginning to read: Thinking and learning about print. Cambridge,
MA: MIT Press.
*Arnbak, E., & Elbro, C. (2000). The effects of morphological awareness training on
the reading and spelling skills of young dyslexics. Scandinavian Journal of
Educational Research, 44, 229.251.
*Baumann, J. F., Edwards, E. C., Boland, E. M., Olejnik, S., & Kamefenui, E. J. (2003).
Vocabulary tricks: Effects of instruction in morphology and context on fifth-grade
studentsf ability to derive and infer word meanings. American Educational Research
Journal, 40, 447.494.
*Baumann, J. F., Edwards, E. C., Font, G., Tereshinski, C. A., Kamefenui, E. J., &
Olejnik, S. (2002). Teaching morphemic and contextual analysis to fifth-grade students.
Reading Research Quarterly, 37, 150.176.
Beck, I., McKeown, M. G., & Kucan, L. (2002). Bringing words to life: Robust vocabulary
instruction. New York: Guilford.
Berko, J. (1958). The childfs learning of English morphology. Word, 14, 150.177.
*Berninger, V., Nagy, W., Carlisle, J., Thomson, J., Hoffer, D., Abbott, S., et al. (2003).
Effective treatment for dyslexics in grades 4 to 6. In B. Foorman (Ed.), Preventing
and remediating reading difficulties: Bringing science to scale (pp. 382.417).
Timonium, MD: York Press.
*Berninger, V., Winn, W., Stock, P., Abbott, R., Eschen, K., Lin, S.-J., et al. (2008). Tier
3 specialized writing instruction for students with dyslexia. Reading and Writing:
An Interdisciplinary Journal, 21, 95.129.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
175
Bertram, R., Laine, M., & Virkkala, M. M. (2000). The role of derivational morphology
in vocabulary acquisition: Get by with a little help from my morpheme friends.
Scandinavian Journal of Psychology, 41, 287.296.
Biemiller, A., & Boote, C. (2006). An effective method for building vocabulary in
primary grades. Journal of Educational Psychology, 98, 44.62.
Borgwaldt, S. R., Hellwig, F. M., & de Groot, A. M. B. (2004). Word-initial entropy in
five languages.Letter to sound and sound to letter. Written Language and Literacy,
7, 165.184.
Borgwaldt, S. R., Hellwig, F. M., & de Groot, A. M. B. (2005). Onset entropy matters.
Letter-to-phoneme mappings in seven languages. Reading and Writing: An
Interdisciplinary Journal, 18, 211.229.
Bosman, A. M. T., Vonk, W., & van Zwam, M. (2006). Spelling consistency affects
reading in young Dutch readers with and without dyslexia. Annals of Dyslexia, 56,
271.300.
*Bowers, P. N., & Kirby, J. R. (2006, July). Morpho-phonological word structure: Can
instruction add transparency to opaque words? Paper presented at the annual meeting
of the Society for the Scientific Study of Reading, Vancouver, Canada.
*Bowers, P. N., & Kirby, J. R. (in press). Effects of morphological instruction on
vocabulary acquisition. Reading and Writing: An Interdisciplinary Journal.
Bradley, L., & Bryant, P. E. (1983). Categorising sounds and learning to read.A
causal connection. Nature, 301, 419.521.
Carlisle, J. F. (1995). Morphological awareness and early reading achievement. In L.
B. Feldman (Ed.), Morphological aspects of language processing (pp. 189.210).
Hillsdale, NJ: Lawrence Erlbaum.
Carlisle, J. F. (2000). Awareness of the structure and meaning of morphologically complex
words: Impact on reading. Reading and Writing: An Interdisciplinary Journal,
12, 169.190.
Carlisle, J. F. (2003). Morphology matters in learning to read: A commentary. Reading
Psychology, 24, 291.332.
Carlisle, J. F. (2007). Fostering morphological processing, vocabulary development,
and reading comprehension. In R. K. Wagner, A. E. Muse, & K. R. Tannenbaum
(Eds.), Vocabulary acquisition: Implications for reading comprehension (pp.
78.103). New York: Guilford.
Carlisle, J. F., & Katz, L. (2006). Effects of word and morpheme familiarity on reading
of derived words. Reading and Writing: An Interdisciplinary Journal, 19, 669.693.
Carlisle, J. F., & Stone, C. A. (2005). Exploring the role of morphemes in word reading.
Reading Research Quarterly, 40, 428.449.
Carlisle, J. F., Stone, C. A., & Katz, L. A. (2001). The effects of phonological transparency
on reading derived words. Annals of Dyslexia, 51, 249.274.
Casalis, S., Cole, P., & Sopo, D. (2004). Morphological awareness in developmental
dyslexia. Annals of Dyslexia, 54, 114.138.
Chomsky, N., & Halle, M. (1968). The sound pattern of English. New York: Harper &
Row.
Coe, R. (2000). Effect size calculator [Excel spreadsheet]. Durham, UK: Durham
University, Curriculum, Evaluation and Management Centre. Retrieved December,
2009, from http://www.cemcentre.org/renderpage.asp?linkID=30325017
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).
Hillsdale, NJ: Lawrence Erlbaum.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
176
Deacon, S. H., & Bryant, P. (2006). This turnipfs not for turning: Childrenfs morphological
awareness and their use of root morphemes in spelling. British Journal of
Developmental Psychology, 24, 567.575.
Deacon, S. H., & Kirby, J. R. (2004). Morphological awareness: Just gmore phonologicalh?
The roles of morphological and phonological awareness in reading development.
Applied Psycholinguistics, 25, 223.238.
Deacon, S. H., Kirby, J. R., & Bell-Casselman, M. (2009). How robust is the contribution
of morphological awareness to general spelling outcomes? Reading Psychology,
30, 301.318.
Deacon, S. H., Parrila, R., & Kirby, J. R. (2008). A review of the evidence on morphological
processing in dyslexics and poor readers: A strength or weakness? In F.
Manis, A. Fawcett, G. Reid, & L. Siegel (Eds.), The Sage handbook of dyslexia (pp.
212.237). London: Sage.
Deacon, S. H., Whalen, R., & Kirby, J. R. (2010). Do children see the danger in dangerous?
Grade 4, 6 and 8 childrenfs reading of morphologically complex words.
Manuscript submitted for publication.
Edwards, C. E., Font, G., Baumann, J. F., & Boland, E. (2004). Unlocking word meanings:
Strategies and guidelines for teaching morphemic and contextual analysis. In
J. F. Baumann & E. J. Kamefenui (Eds.), Vocabulary instruction: Research to practice
(pp. 159.176). New York: Guilford.
Ehri, L. C. (1995). Phases of development in learning to read words by sight. Journal
of Research in Reading, 18, 116.125.
Ehri, L. C. (1997). Learning to read and learning to spell are one and the same, almost.
In C. A. Perfetti, L. Reiben, & M. Fayol (Eds.), Learning to spell: Research, theory,
and practice across languages (pp. 237.269). Mahwah, NJ: Lawrence Erlbaum.
Ehri, L. C., & McCormick, S. (1998). Phases of word learning: Implications for
instruction with delayed and disabled readers. Reading and Writing Quarterly, 14,
135.163.
Elbro, C., & Arnbak, E. (1996). The role of morpheme recognition and morphological
awareness in dyslexia. Annals of Dyslexia, 46, 209.240.
Fowler, A. E., & Liberman, I. Y. (1995). The role of phonology and orthography in
morphological awareness. In L. B. Feldman (Ed.), Morphological aspects of language
processing (pp. 157.188). Hillsdale, NJ: Lawrence Erlbaum.
Graves, M. F. (2004). Teaching prefixes: As good as it gets? In J. F. Baumann & E. J.
Kamefenui (Eds.), Vocabulary instruction: Research to practice (pp. 81.99). New
York: Guilford.
Graves, M. F. (2006). The vocabulary book: Learning and instruction. New York:
Teachers College Press, Columbia University.
*Henry, M. K. (1989). Childrenfs word structure knowledge: Implications for decoding
and spelling instruction. Reading and Writing: An Interdisciplinary Journal, 2, 135.
152.
Henry, M. K. (2003). Unlocking literacy: Effective decoding & spelling instruction.
Baltimore: Brookes.
Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and
bias in research findings (2nd ed.). Thousand Oaks, CA: Sage.
*Hurry, J., Nunes, T., Bryant, P., Pretzlik, U., Parker, M., & Curno, T. (2005).
Transforming research on morphology into teacher practice. Research Papers in
Education, 20, 187.206.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
177
Kemp, N. (2006). Childrenfs spelling of base, inflected and derived words: Links with
morphological awareness. Reading and Writing: An Interdisciplinary Journal, 19,
737.765.
*Kirk, C., & Gillon, T. G. (2009). Integrated morphological awareness intervention as
a tool for improving literacy. Language, Speech, and Hearing Services in Schools,
40, 341.351.
Leong, C. K. (1989). The effects of morphological structure on reading proficiency.
A developmental study. Reading and Writing: An Interdisciplinary Journal, 1, 357.
379.
*Lyster, S. H. (1998). Preventing reading failure: A follow-up study. Dyslexia, 4, 132.
144.
*Lyster, S. H. (2002). The effects of morphological versus phonological awareness
training in kindergarten on reading development. Reading and Writing: An
Interdisciplinary Journal, 15, 261.294.
Mahony, D., Singson, M., & Mann, V. (2000). Reading ability and sensitivity to morphological
relations. Reading and Writing: An Interdisciplinary Journal, 12, 191.
218.
McBride-Chang, C., Cho, J.-R., Liu, H., Wagner, R., Shu, H., Zhou, A., et al. (2005).
Changing models across cultures: Associations of phonological awareness and morphological
structure awareness with vocabulary and word recognition in second
graders from Beijing, Hong Kong, Korea, and the United States. Journal of
Experimental Child Psychology, 92, 140.160.
Moats, L. (in press). Knowledge foundations for teaching reading and spelling. Reading
and Writing: An Interdisciplinary Journal.
Nagy, W., Anderson, R., Schommer, M., Scott, J., & Stallman, A. (1989). Morphological
families in the internal lexicon. Reading Research Quarterly, 24, 262.282.
National Reading Panel. (2000). Teaching children to read: An evidence-based assessment
of the scientific research literature on reading and its implications for reading
instruction. Bethesda, MD: National Institute of Child Health and Human
Development.
Nunes, T., & Bryant, P. (2006). Improving literacy by teaching morphemes. London:
Routledge.
Nunes, T., Bryant, P., & Bindman, M. (1997). Childrenfs understanding of the connection
between grammar and spelling. In B. Blachman (Ed.), Foundations of reading
acquisition and dyslexia: Implications for early intervention (pp. 219.240).
Mahwah, NJ: Laurence Erlbaum.
*Nunes, T., Bryant, P., & Olsson, J. (2003). Learning morphological and phonological
spelling rules: An intervention study. Scientific Studies in Reading, 7, 289.307.
*Parel, R. (2006). The impact of training in morphological analysis on literacy in the
primary grades. International Journal of Learning, 13, 119.128.
Perfetti, C. A. (2007). Reading ability: Lexical quality to comprehension. Scientific
Studies of Reading, 11, 357.383.
Perfetti, C. A., & Hart, L. (2001). The lexical bases of comprehension skill. In D.
Gorfien (Ed.), On the consequences of meaning selection (pp. 67.86). Washington,
DC: American Psychological Association.
Perfetti, C. A., & Hart, L. (2002). The lexical quality hypothesis. In L. Vehoeven, C.
Elbro, & P. Reitsma (Eds.), Precursors of functional literacy (pp. 189.213).
Amsterdam: John Benjamins.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Bowers et al.
178
Rayner, K., Foorman, B. R., Perfetti, C. A., Pesetsky, D., & Seidenberg, M. S. (2001).
How psychological science informs the teaching of reading. Psychological Science
in the Public Interest, 2, 31.74.
Reed, D. K. (2008). A synthesis of morphology interventions and effects on reading
outcomes for students in Grades K-12. Learning Disabilities Research & Practice,
23, 36.49.
*Robinson, J., & Hesse, K. (1981). A morphemically based spelling programfs effect
on spelling skills and spelling performance of seventh grade students. Journal of
Educational Research, 75, 56.62.
Roman, A. A., Kirby, J. R., Parrila, R. K., Wade-Woolley, L., & Deacon, S. H. (2009).
Toward a comprehensive view of the skills involved in word reading in Grades 4, 6,
and 8. Journal of Experimental Child Psychology, 102, 96.113.
Salomon, G., & Perkins, D. N. (1989). Rocky roads to transfer: Rethinking mechanisms
of a neglected phenomenon. Educational Psychologist, 24, 111.142.
Schnotz, W., & Kurschner, C. (2007). A reconsideration of cognitive load theory.
Educational Psychology Review, 19, 496.508.
Scott, J. A., & Nagy, W. E. (2004). Developing word consciousness. In J. F. Baumann
& E. J. Kamefenui (Eds.), Vocabulary instruction: Research to practice (pp. 201.
217). New York: Guilford.
Seymour, P. H. K., Aro, M., & Erskine, J. M. (2003). Foundation literacy acquisition
in European orthographies. British Journal of Psychology, 94, 143.174.
Singson, M., Mahony, D., & Mann, V. (2000). The relation between reading ability and
morphological skills: Evidence from derivational suffixes. Reading and Writing: An
Interdisciplinary Journal, 12, 219.252.
Stahl, S. A., & Nagy, W. E. (2006). Teaching word meanings. Mahwah, NJ: Lawrence
Erlbaum.
Stone, G. O., Vanhoy, M., & Van Orden, G. C. (1997). Perception is a two-way street:
Feedforward and feedback phonology in visual word recognition. Journal of
Memory and Language, 36, 337.359.
Sweller, J. (1988). Cognitive load during problem-solving: Effects on learning.
Cognitive Science, 12, 257.285.
Taft, M. (2003). Morphological representation as a correlation between form and
meaning. In E. Assink & D. Sandra (Eds.), Reading complex words (pp. 113.137).
Amsterdam: Kluwer.
Taft, M., & Kougious, P. (2004). The processing of morpheme-like units in monomorphemic
words. Brain and Language, 90, 9.16.
Taft, M., & Zhu, X. (1995). The representation of bound morphemes in the lexicon: A
Chinese study. In L. B. Feldman (Ed.), Morphological aspects of language processing
(pp. 293.316). Hillsdale, NJ: Lawrence Erlbaum.
Templeton, S. (2004). The vocabulary-spelling connection: Orthographic development
and morphological knowledge at the intermediate grades and beyond. In J. F.
Baumann & E. J. Kamefenui (Eds.), Vocabulary instruction: Research to practice
(pp. 118.138). New York: Guilford.
Thompson, B. (2006). Foundations of behavioral statistics: An insight-based approach.
New York: Guilford.
*Tomesen, M., & Aarnoutse, C. (1998). Effects of an instructional programme for
deriving word meanings. Educational Studies, 24, 107.128.
Treiman, R., Cassar, M., & Zukowski, A. (1994). What types of linguistic information
do children use in spelling? The case of flaps. Child Development, 65, 1318.1337.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
Morphological Instruction
179
*Tyler, A. A., Lewis, K. E., Haskill, A., & Tolbert, L. C. (2003). Outcomes of different
speech and language goal attack strategies. Journal of Speech, Language & Hearing
Research, 46, 1077.1094.
*Vadasy, P. F., Sanders, E. A., & Peyton, J. A. (2006). Paraeducator supplemented
instruction in structural analysis with text reading practice for second and third graders
at risk for reading problems. Remedial and Special Education, 27, 365.378.
Venezky, R. (1967). English orthography: Its graphical structure and its relation to
sound. Reading Research Quarterly, 2, 75.105.
Venezky, R. (1970). The structure of English orthography. The Hague, Netherlands:
Mouton.
Venezky, R. (1999). The American way of spelling. New York: Guilford.
Wysocki, K., & Jenkins, J. R. (1987). Deriving word meanings through morphological
generalization. Reading Research Quarterly, 22, 66.81.
Authors
PETER N. BOWERS is a PhD student studying with John R. Kirby at the faculty
of Education and Queenfs University, Kingston, Ontario, Canada K7L 3N6; email:
peterbowers1@me.com. Drawing from ten years of experience as classroom teacher, his
research interest focuses on literacy learning, and instruction.
JOHN R. KIRBY, PhD, is a Professor of Educational Psychology at Queenfs University,
Kingston, Ontario, Canada K7L 3N6; e-mail: john.kirby@queensu.ca. His research interests
concern the cognitive processes involved in word reading and reading comprehension.
HELENE DEACON, PhD, is an Associate Professor in the Department of Psychology at
Dalhousie University where she directs the Language and Literacy Lab. Taking an interdiscriplinary
and collaborative approach, she researches the skills that children and adults
bring to the reading and writing enterprise.
Downloaded from http://rer.aera.net at TEACHERS COLLEGE LIBRARY on July 14, 2010
TO GET YOUR ASSIGNMENTS DONE AT A CHEAPER PRICE,PLACE YOUR ORDER WITH US NOW

Leave a Reply

WPMessenger